Machine learning in process systems engineering: Challenges and opportunities

Abstract

This “white paper” is a concise perspective of the potential of machine learning in the process systems engineering (PSE) domain, based on a session during FIPSE 5, held in Crete, Greece, June 27–29, 2022. The session included two invited talks and three short contributed presentations followed by extensive discussions. This paper does not intend to provide a comprehensive review on the subject or a detailed exposition of the discussions; instead its aim is to distill the main points of the discussions and talks, and in doing so, highlight open problems and directions for future research. The general conclusion from the session was that machine learning can have a transformational impact on the PSE domain enabling new discoveries and innovations, but research is needed to develop domain-specific techniques for problems in molecular/material design, data analytics, optimization, and control.

Publication
Computers & Chemical Engineering
Dr. Ehecatl Antonio del Rio Chanona
Dr. Ehecatl Antonio del Rio Chanona
Principal Investigator of OptiML

Antonio del Rio Chanona is the head of the Optimisation and Machine Learning for Process Systems Engineering group based in thee Department of Chemical Engineering, as well as the Centre for Process Systems Engineering at Imperial College London. His work is at the forefront of integrating advanced computer algorithms from optimization, machine learning, and reinforcement learning into engineering systems, with a particular focus on bioprocess control, optimization, and scale-up. Dr. del Rio Chanona earned his PhD from the Department of Chemical Engineering and Biotechnology at the University of Cambridge, where his outstanding research earned him the prestigious Danckwerts-Pergamon award for the best PhD dissertation of 2017. He completed his undergraduate studies at the National Autonomous University of Mexico (UNAM), which laid the foundation for his expertise in engineering.